4.6 Article

The cytochrome P450 metabolic profiling of SMU-B in vitro, a novel small molecule tyrosine kinase inhibitor

出版社

ELSEVIER
DOI: 10.1016/j.jpba.2020.113400

关键词

SMU-B; Metabolism; Liver microsomes; CYP3A4/5; Molecular docking

资金

  1. National NaturalScience Foundation of China [81573263]
  2. Scienceand Technology Planning Project of Guangdong Province, China [2014A020210012]

向作者/读者索取更多资源

A novel small molecule tyrosine kinase inhibitor 6-[6-Amino-5-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-3-pyridyl]-1'-methylspiro[indoline-3,4'-piperidine]-2-one (SMU-B) had good activity against ALK (anaplastic lymphoma kinase) and ROS1 (c-ros oncogene 1) targets in non-small-cell lung cancer. The excellent bioactivity of SMU-B highlights the importance of determining its metabolic traits, which could provide meaningful information for further pharmacokinetic studies of SMU-B. In this work, we studied the metabolism of SMU-B in human liver microsomes. Three metabolites of SMU-B were identified by a quadrupole-time of flight tandem mass spectrometer (Q-TOF-MS), and the metabolic pathways of SMU-B were demethylation, dehydrogenation and oxidation. CYP3A4/5 was the principal isoform involved in SMU-B metabolism, as shown by chemical inhibition and recombination human enzyme studies. Additionally, a predication with a molecular docking model confirmed that SMU-B could interact with the active sites of CYP3A4 and CYP3A5. This study illuminates the metabolic profile of the anti-tumor drug SMU-B, which will accelerate its clinical use. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据