4.5 Article

Morphological and petro physical estimation of Eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin, Pakistan

期刊

出版社

ELSEVIER
DOI: 10.1016/j.petrol.2020.107318

关键词

Tight carbonate rocks; Petro physics; SEM; AFM; Nano indentation; Liquid nitrogen

资金

  1. Mehran University of Engineering and Technology, Jamshoro
  2. NED University, Karachi, Pakistan
  3. Edith Cowan University, Western Australia, Australia
  4. Institute of Petroleum and Natural Gas

向作者/读者索取更多资源

Significant amounts of hydrocarbons are contained in tight carbonate rocks like those within the Indus basin of Pakistan, but due to their unconventional nature, their extraction is difficult. This can be completed/conducted by properly characterizing its mineralogical, geochemical and microstructural properties. In this context, Hydraulic fracturing and acidizing are the most common fracture stimulation techniques. However, they suffer significant technical and environmental flaws. Liquid Nitrogen (LN2) fracking is considered as one of the best alternatives compare to hydraulic fracturing or acidizing due to its eco-friendly nature. In fact, after exposer to LN2, super cryogenic feature of the rock causes porosity, permeability and fracture conductivity enhancement due to thermal shock without any environmental consequences. The effect of Liquid Nitrogen fracking on tight carbonate outcrops collected from the Indus basin is investigated in the present study. Scanning Electron Microscopy (SEM) reveals the clear appearance of wide pore fractures with sizes from 4 mu m to 50 mu m, when subjected to liquid Nitrogen (LN2) treatment ranging from 30 to 90 min' duration. Furthermore, SEM and Atomic Force Microscopy (AFM) images also indicate clear pore fractures in tight carbonate rocks along with increased pore connectivity. Moreover, following liquid nitrogen treatment of up to 90 min the permeability of tight carbonate increases by 53% and increases in porosity by 73%. Results from SEM studies suggest that visible fractures occur in the tight carbonate samples with liquid nitrogen treatment because of the freezing temperature (-196 C-square) of Liquid Nitrogen. In addition to this, Nano indentation moduli depict significant decreases in tight carbonate rocks, both before and after exposure to LN2, as a result of increases in liquid rock compressibility. In this regard, a 50 mN force decreased from 50.57 GPa to 24.37 GPa and for a 200 mN force this decreased from 45.77 GPa to 26.67 GPa. This research depicts the significant effect of Liquid Nitrogen freezing on the fracturing of carbonate rocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据