4.4 Article

Viscoelastic properties of flexible and rigid polymers for turbulent drag reduction

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jnnfm.2020.104347

关键词

Polymer drag reduction; Dilute polymer solutions; Extensional viscosity; Linear viscoelasticity

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Alberta Innovates-Technology Futures (AITF)
  3. Sadler Scholarship in Mechanical Engineering
  4. Donald Lougheed Engineering Graduate Scholarship

向作者/读者索取更多资源

The relation between the drag reduction (DR) performance of several water-soluble polymers and their viscoelastic properties was investigated. Polymers with a flexible molecular structure including three grades of polyacrylamides (PAM), and a polyethylene oxide (PEO) were investigated. Xanthan gum (XG) and carboxymethyl cellulose (CMC), each with a rigid molecular structure, were also considered. The rheology was characterized using steady shear-viscosity measurement, capillary break-up extensional rheometer (CaBER), and small-amplitude oscillatory shear measurement at the concentration of the drag-reduced solution. To isolate the effect of shear viscosity, the concentration of the polymers was adjusted to produce solutions with a similar shear viscosity at high shear rates. Using pressure drop measurements in a turbulent pipe flow, the DR of each polymer solution was determined. With identical high-shear-rate viscosities, the flexible PAM solutions resulted in an initial DR of 50-58%, while the initial DR of PEO was 44%, and the rigid polymers provided the least DR of 12%. The rigid polymers demonstrated negligible degradation of DR over a period of 2 h. Of the flexible polymers, PAM showed moderate degradation, while the DR of PEO quickly diminished after 20 min. Drag reduction correlated with extensional viscosity and Weissenberg number obtained from CaBER. A strong correlation was not observed between DR and the viscoelastic moduli obtained from small-amplitude oscillatory shear. The large mechanical degradation of PEO was associated with a continuous extensional thickening, in which extensional viscosity increased with decreasing strain rate until the filament broke up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据