4.7 Article

Natural and Semisynthetic Chalcones as Dual FLT3 and Microtubule Polymerization Inhibitors

期刊

JOURNAL OF NATURAL PRODUCTS
卷 83, 期 10, 页码 3111-3121

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jnatprod.0c00699

关键词

-

资金

  1. Lahore University of Management Sciences (LUMS) [STG-BIO1009]
  2. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Activating mutations in FLT3 receptor tyrosine kinase are found in a third of acute myeloid leukemia (AML) patients and are associated with disease relapse and a poor prognosis. The majority of these mutations are internal tandem duplications (ITDs) in the juxtamembrane domain of FLT3, which have been validated as a therapeutic target. The clinical success of selective inhibitors targeting oncogenic FLT3, however, has been limited due to the acquisition of drug resistance. Herein the identification of a dual FLT3/microtubule polymerization inhibitor, chalcone 4 (2'-allyloxy-4,4'-dimethoxychalcone), is reported through screening of 15 related chalcones for differential antiproliferative activity in leukemia cell lines dependent on FLT3-ITD (MV-4-11) or BCR-ABL (K562) oncogenes and by subsequent screening for mitotic inducers in the HCT116 cell line. Three natural chalcones (1-3) were found to be differentially more potent toward the MV-4-11 (FLT3-ITD) cell line compared to the K562 (BCR-ABL) cell line. Notably, the new semisynthetic chalcone 4, which is a 2'-O-allyl analogue of the natural chalcone 3, was found to be more potent toward the FLT3-ITD+ cell line and inhibited FLT3 signaling in FLT3-dependent cells. An in vitro kinase assay confirmed that chalcone 4 directly inhibited FLT3. Moreover, chalcone 4 induced mitotic arrest in these cells and inhibited tubulin polymerization in both cellular and biochemical assays. Treatment of MV-4-11 cells with this inhibitor for 24 and 48 h resulted in apoptotic cell death. Finally, chalcone 4 was able to overcome TKD mutation-mediated acquired resistance to FLT3 inhibitors in a MOLM-13 cell line expressing FLT3-ITD with the D835Y mutation. Chalcone 4 is, therefore, a promising lead for the discovery of dual-target FLT3 inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据