4.6 Article

Aircraft fault-tolerant trajectory control using Incremental Nonlinear Dynamic Inversion

期刊

CONTROL ENGINEERING PRACTICE
卷 57, 期 -, 页码 126-141

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2016.09.010

关键词

Trajectory control; Fault-tolerant control; Nonlinear flight control; Incremental Nonlinear Dynamic Inversion; Model identification

向作者/读者索取更多资源

This paper deals with aircraft trajectory control in the presence of model uncertainties and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear dynamic inversion with online model identification, can be applied. However, since there are a number of unknown aerodynamic derivatives, the tuning of parameter update law gains is time-consuming. Methods with online model identification require excitation and the selection of a threshold. Furthermore, to deal with highly nonlinear aircraft dynamics, the aerodynamic model structure needs to be designed. In this paper, a novel aircraft trajectory controller, which uses the Incremental Nonlinear Dynamic Inversion, is proposed to achieve fault-tolerant trajectory control. The detailed control law design of four loops is presented. The idea is to design the loops with uncertainties using the incremental approach. The tuning of the approach is straightforward and there is no requirement for excitation and selection of a threshold. The performance of the proposed controller is compared with existing approaches using three scenarios. The results show that the proposed trajectory controller can follow the reference even when there are model uncertainties and actuator faults. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据