4.7 Article

Nitrile group as IR probe to detect the structure and hydrogen-bond properties of piperidinium/pyrrolidinium based ionic liquids and acetonitrile mixtures

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 322, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.114548

关键词

Ionic liquids; Acetonitrile; Hydrogen-bond; Density functional theory; Infrared spectroscopy; Excess spectra

资金

  1. National Natural Science Foundation of China [21703035, 21703115]
  2. Hong Kong Scholar Program [XJ2018022]
  3. National Science Fund for Excellent Young Scholars [21922813]
  4. Earmarked Fund for China Agriculture Research System [CARS-44-KXJ7]
  5. Fujian Agriculture and Forestry University Foundation for excellent youth teachers [xjq201715]

向作者/读者索取更多资源

The study investigates the structure and hydrogen-bond features of pyrrolidinium/piperidinium based ILs and acetonitrile mixtures using FTIR and DFT calculations. It is found that throughout the concentration range, acetonitrile cannot break the strong coulombic interactions between the cation and anion, leading to weak hydrogen bonds in the ion pair/ion cluster-acetonitrile complexes.
The use of molecular solvents has been proposed as a simple solution to reduce the high viscosities of neat ionic liquids (ILs) and extend the practical applications of ILs. A proper understanding of the structure and intermolecular interaction is of vital importance for the design, optimization and synthesis of ILs systems with tailored properties for specific applications. In this work, the structure and hydrogen-bond features of the representative pyrrolidinium/piperidinium based ILs and acetonitrile mixtures were studied by a combination of Fouriertransform infrared spectroscopy (FTIR) and density functional theory (DFT) calculations. The nu(C N) region is sensitive to the microenvironment and is used as IR probe to detect the structure and hydrogen-bond properties of the two IL-acetonitrile binary systems in the whole concentration range. Positive peaks are observed in the excess IR spectra of nu(C N) region which indicates the non-ideality of the mixing process and the formation of hydrogen-bonded complexes in the mixtures. With the help of deconvolution and DFT calculations, the species transformation in the mixing process can be identified from the excess spectra: When x(CD3CN) is less than 0.90, acetonitrile mainly interacts with the ion pairs and ion clusters of the ILs. Ion clusters are all broken out into ion pairs and the interaction complex is mainly ion pair-CD3CN when x(CD3CN) > 0.90. In the whole concentration range, the CD3CN cannot break apart the strong coulombic interactions between the cation and anion, and the individual cation and anion do not exist in the mixtures. All of the hydrogen-bonds in the ion pair/ion clusteracetonitrile complexes are weak strength, closed shells and electrostatically dominant interactions. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据