4.4 Article

Development of Analytical Solution for a Two-Phase Stefan Problem in Artificial Ground Freezing Using Singular Perturbation Theory

出版社

ASME
DOI: 10.1115/1.4048137

关键词

-

资金

  1. McGill Engineering Doctoral Award (MEDA)
  2. Fonds de recherche du Quebec-Nature et technologies (FRQNT)-Bourses de doctorat (B2X)

向作者/读者索取更多资源

Artificial ground freezing (AGF) has historically been used to stabilize underground structure. Numerical methods generally require high computational power to be applicable in practice. Therefore, it is of interest to develop accurate and reliable analytical frameworks for minimizing computational cost. This paper proposes a singular perturbation solution for a two-phase Stefan problem that describes outward solidification in AGF. Specifically, the singular perturbation method separates two distinct temporal scales to capture the subcooling and freezing stages in the ground. The ground was considered as a porous medium with volume-averaged thermophysical properties. Further, Stefan number was assumed to be small, and effects of a few site-dependent parameters were investigated. The analytical solution was verified by numerical results and found to have similar conclusions yet with much lesser computational cost. Keywords: artificial ground freezing, Stefan-like problems, singular perturbation, porous media, outward solidification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据