4.7 Article

Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 397, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122804

关键词

BTEX; Persulfate; Radicals; Acoustic cavitation; AOPs

资金

  1. National Science Centre, Warsaw, Poland for project OPUS [UMO-2017/25/B/ST8/01364]
  2. National Center for Research and Development, Warsaw, Poland -Project LIDER [LIDER/036/573/L-5/13/NCBR/2014]

向作者/读者索取更多资源

This study investigated - for the first time - the simultaneous degradation of benzene, toluene, ethylbenzene and o-xylene (BTEX) by persulfate (PS) and peroxymonosulfate (PMS) activated by asphaltenes (Asph) under ultrasound (US) irradiation. Advantageous properties such as high thermal stability, low production cost and extensive availability make asphaltenes as an appealing carbonaceous material for heterogeneous catalysis. The application of asphaltenes in PS/US increased the degradation of BTEXs from 31%, 34%, 35%, 32%-78%, 94%, 98% and 98%, while the removal of these compounds in PMS/US system was improved from 26%, 27%, 24%, 20%-76%, 91%, 97%, 97%, respectively. PS and PMS activation followed a typical sulfate-radical based advanced oxidation processes. In terms of activation of PS and PMS, the particles of asphaltenes intensified formation of reactive radicals by creating additional centers of cavitational events. Moreover, owing to pi-pi stacking interaction between asphaltenes and sp(2)-hybridized systems of BTEX, the contaminants undergo adsorption on the surface of asphaltenes and subsequent oxidation by formed radicals. The radical route of BTEX degradation in both PS/US/Asph and PMS/US/Asph systems was mainly contributed by sulfate (SO4 center dot-) and hydroxyl radicals (HO center dot) and coexisting superoxide radical anions (O-2(center dot-)) played a minor role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据