4.7 Article

Construction of NH2-MIL-125(Ti)/CdS Z-scheme heterojunction for efficient photocatalytic H2 evolution

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 405, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124128

关键词

Photocatalysis; Heterojunction; Hydrogen production; Photoelectrochemical property

资金

  1. National Natural Science Foundation of China, China [21673300]
  2. Fundamental Research Funds for the Central Universities, South Central University for Nationalities, China [CZT19001]

向作者/读者索取更多资源

The research team successfully designed a Z-scheme CdS/NH2-MIL-125(Ti) heterojunction photocatalyst, which can significantly enhance the hydrogen evolution rate and provide a new avenue for solar-driven energy conversion.
Designing efficient semiconductor-based photocatalysts for hydrogen production is a challenging but promising prospect in energy conversion. Herein, a novel Z-scheme CdS/NH2-MIL-125(Ti) heterojunction is successfully fabricated through a facile solvethermal method. The detailed characterizations reveal that CdS nanoparticles are in-suit archored on NH2-MIL-125(Ti) nanoplates. Benefited from the intrinsic band alignment and intimate contact of two species, this established structure gives a positive effect regarding charge separation. In consequence, the optimal CdS/NH2-MIL-125(Ti) nanocomposites exhibit excellent photocatalytic performance with hydrogen evolution rate of 6.62 mmol.h(-1).g(-1) under visible light illumination, which was 3.5 times higher than that of the pristine CdS. We believe that this work will provide a new avenue to develop high-efficiency heterojunction catalyst for solar-driven energy conversions and other application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据