4.7 Article

Recycling dredged harbor sediment to construction materials by sintering with steel slag and waste glass: Characteristics, alkali-silica reactivity and metals stability

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 270, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.110869

关键词

Dredged sediment; Basic-oxygen-furnace slag; Waste glass; Lightweight aggregates; Metal stability; Waste reduction

资金

  1. ROC Ministry of Science and Technology [MOST-107-2622-E-992-015-CC2]

向作者/读者索取更多资源

This work recovered the dredged sediment around Kaohsiung Harbor, Taiwan, for preparing lightweight aggregates (LWA), of which physicochemical properties as affected by the addition of basic-oxygen-furnace (BOF) slag and waste glass were investigated. LWA properties included water absorption, particle density, compressive strength, shrinkage, and microstructure of sintered pellets were evaluated to ensure feasibility of dredged harbor sediment reutilization technique. Results showed that adding appropriate amount of glass powders (similar to 7%) to the mixtures of sediment and slag significantly reduced the water absorption (as low as 2.2%) of the sintered pellets and increase the compressive strength (as high as 23.1 MPa) of LWA, which were found to be controlled by open porosity and shrinkage. Excessive addition of glass (>10%) led to increase in internal pore sizes of the sintered pellets, and thus reduced the compressive strength. The alkali-silica reactivity (ASR) of the LWA was innocuous according to the ASTM C289 test. Sintering and glass addition improved the stability of heavy metal and environmental compatibility of the LWA. The recycling of waste sediment, slag, and glass for LWA production can provide an alternative for the disposal of dredge harbor sediment and has positive impact on waste reduction, which not only can reduce secondary contamination to the environment, but also can contribute to circular economy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据