4.7 Article

Computational homogenization of effective permeability in three-phase mesoscale concrete

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 121, 期 -, 页码 100-111

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2016.05.141

关键词

Concrete; Mesoscale model; Effective permeability; Computational homogenization; Representative volume element (RVE)

向作者/读者索取更多资源

Concrete is modeled on the mesoscale as a heterogeneous three-phase composite consisting of mortar, aggregates and the interfacial transition zone (ITZ). By exerting a steady state flow in the concrete sample, the effective permeability is estimated using finite element method (FEM). Extensive Monte Carlo (MC) simulations for more than 1000 concrete samples are carried out. The effects of the mesostructural parameters (i.e., the shape, gradation and volume fraction of aggregates and the thickness and permeability of ITZ) on the permeability of concrete are comprehensively investigated. For a specific set of mesostructural parameters, the size of the representative volume element (RVE) for concrete permeability is suggested in terms of the expected errors by numerical and statistical analysis. It shows that computational homogenization for estimating the effective permeability of concrete in three dimensions (3D) is absolutely necessary since the two dimensional (2D) results are less representative. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据