4.7 Article

Transfer learning based multi-fidelity physics informed deep neural network

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 426, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2020.109942

关键词

Multi-fidelity; Deep learning; Physics-informed; Transfer learning; Reliability

资金

  1. I-Hub Foundation for Cobotics (IHFC)

向作者/读者索取更多资源

This paper introduces a novel multi-fidelity physics informed deep neural network (MF-PIDNN) to address the challenge of analyses and design for systems where the governing differential equation is either not known or known in an approximate sense. MF-PIDNN blends physics informed and data-driven deep learning techniques by using transfer learning, providing accurate predictions even in zones with no data. The approach updates a low-fidelity model with available high-fidelity data, showcasing the effectiveness of transfer learning in solving multi-fidelity problems.
For many systems in science and engineering, the governing differential equation is either not known or known in an approximate sense. Analyses and design of such systems are governed by data collected from the field and/or laboratory experiments. This challenging scenario is further worsened when data-collection is expensive and time-consuming. To address this issue, this paper presents a novel multi-fidelity physics informed deep neural network (MF-PIDNN). The framework proposed is particularly suitable when the physics of the problem is known in an approximate sense (low-fidelity physics) and only a few high-fidelity data are available. MF-PIDNN blends physics informed and data-driven deep learning techniques by using the concept of transfer learning. The approximate governing equation is first used to train a low-fidelity physics informed deep neural network. This is followed by transfer learning where the low-fidelity model is updated by using the available high-fidelity data. MF-PIDNN is able to encode useful information on the physics of the problem from the approximate governing differential equation and hence, provides accurate prediction even in zones with no data. Additionally, no low-fidelity data is required for training this model. Two examples involving function approximations with linear and nonlinear correlation are presented to illustrate the effectiveness of transfer learning in solving multi-fidelity problems. Applicability and utility of MF-PIDNN are illustrated in solving four benchmark reliability analysis problems. Case studies presented illustrate interesting features of the proposed approach. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据