4.4 Article

Inhibition of Quorum Sensing, Motility and Biofilm Formation ofPseudomonas aeruginosaby Copper Oxide Nanostructures

期刊

JOURNAL OF CLUSTER SCIENCE
卷 32, 期 6, 页码 1531-1541

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10876-020-01916-2

关键词

Nanostructures; P; aeruginosa; Biofilm; Quorum sensing; Virulence factors

向作者/读者索取更多资源

CuO nanostructures exhibit inhibitory effects on quorum sensing, showing potential clinical applications in the management of infections associated with P. aeruginosa.
Quorum sensing (QS) is the communication between bacterial cells governed by their population density and regulated by the genes controlling virulence factors and biofilm formation. Multiple mechanisms of biofilms are resistive to antimicrobial chemotherapy; therefore novel strategies are required to overcome its limitations. Here, we report the effect of various copper oxide nanostructures (CuO-NSs) on quorum sensing inhibition. The two-dimensional CuO-NSs such as interlaced nanodiscs, nanodiscs and leaf-shaped nanosheets are prepared via a simple chemical method. The Quorum sensing inhibition (QSI) activity of all the CuO-NS are examined using reporter strainChromobacterium violaceumCV026 andEscherichia colipSB1142. We found that the CuO-interlaced nanodisc structures exhibit better QSI activity than nanodiscs and leaf-shaped sheets. The interlaced nanodisc structures are inhibited various long-chainN-acyl homoserine lactones (AHLs) mediated QS individually and confirmed by other QS-associated phenomena forPseudomonas aeruginosa, including biofilm inhibition, inhibition of virulence factors such as pyocyanin, protease production and swarming motility. Thus QSI activity of CuO-NSs is solely dependent on specific shape offering large surface area and more active sites. The CuO-NS is effective quorum sensing inhibitors, which has potential clinical applications in the management ofP. aeruginosaassociated infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据