4.7 Article

Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts

期刊

JOURNAL OF CLEANER PRODUCTION
卷 268, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2020.122378

关键词

Engineered biochar; Biomass valorisation; Sustainable biorefinery; Graphene oxide; Glucose isomerisation; Waste management

资金

  1. Hong Kong Research Grants Council [PolyU 15217818]
  2. Hong Kong International Airport Environmental Fund (Phase 2)
  3. University Research Facility on Chemical and Environmental Analysis (URFCE) of PolyU

向作者/读者索取更多资源

Driven by the worldwide demand for sustainable resources and renewable energy, the synthesis of bio-based platform chemicals has attracted broad interest. The isomerisation of glucose to fructose acts as a critical intermediate step among many chemical synthesis routes. In this study, biochar (BC), graphitic oxide (GIO), and graphene oxide (GO) were used as carbon supports to synthesize Al-impregnated heterogeneous catalysts, which were then used for glucose isomerisation under microwave heating in the water at 140 degrees C. The kinetics model with parameters was used to reveal the interplay of the active sites and compare the activity of the three carbon-based catalysis systems. Catalyst characterisation results showed effective aluminium (Al) impregnation onto the three types of catalysts, and it was found that GIO-Al200 and GO-Al200 showed comparable catalytic activity (fructose yield of 34.3e35.0%) for glucose isomerisation. At the same time, BC-Al200 exhibited slightly lower catalytic activity (fructose yield of 29.4%). The conversion kinetics suggested similar catalytic mechanisms on the three catalysts while BC-Al200 manifested slower kinetics, possibly implying higher activation energy. The fructose selectivity decreased with increasing time due to the formation of side products, yet BC-Al200 resulted in less carbon loss than GIO-Al200 and GO-Al200, probably attributed to its lower catalytic activity and higher pH buffering capacity. A green synthesis route of this study promotes biomass valorisation and makes engineered biochar a promising carbon-based catalyst for sustainable biorefinery. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据