4.7 Article

Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 16, 期 10, 页码 6539-6549

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c00632

关键词

-

资金

  1. French National Research Agency (ANR) [MuSiC ANR-14-CE06-0030]
  2. AXELERA Po<^>le de Competitivite
  3. SYSPROD Project
  4. National Science Foundation [CHE-1416571]

向作者/读者索取更多资源

Modeling adsorption at metal/water interfaces is a cornerstone toward an improved understanding in a variety of fields from heterogeneous catalysis to corrosion. We propose and validate a hybrid scheme that combines the adsorption free energies obtained in the gas phase at the density functional theory level with the variation in solvation from the bulk phase to the interface evaluated using a MM-based alchemical transformation, denoted MMsolv. Using the GAL17 force field for the platinum/water interaction, we retrieve a qualitatively correct interaction energy of the water solvent at the interface. This interaction is of near chemisorption character and thus challenging, both for the alchemical transformation and also for the fixed point-charge electrostatics. Our scheme passes through a state characterized by a well-behaved physisorption potential for the Pt(111)/H2O interaction to converge the free energy difference. The workflow is implemented in the freely available SolvHybrid package. We first assess the adsorption of a water molecule at the Pt/water interface, which turns out to be a stringent test. The intrinsic error of our quantum-mechanical/molecular mechanics (QM/MM) hybrid scheme is limited to 6 kcal mol(-1) through the introduction of a correction term to attenuate the electrostatic interaction between near-chemisorbed water molecules and the underlying Pt atoms. Next, we show that the MMsolv solvation free energy of Pt (-0.46 J m(-2)) is in good agreement with the experimental estimate (-0.32 J m(-2)). Furthermore, we show that the entropy contribution at room temperature is roughly of equal magnitude as the free energy but with an opposite sign. Finally, we compute the adsorption energy of benzene and phenol at the Pt(111)/water interface, one of the rare systems for which experimental data are available. In qualitative agreement with the experiment, but in stark contrast with a standard implicit solvent model, the adsorption of these aromatic molecules is strongly reduced (i.e., less exothermic by similar to 30 and 40 kcal mol(-1) for our QM/MM hybrid scheme and experiment, respectively, but similar to 0 with the implicit solvent) at the solid/liquid interface compared to the solid/gas interface. This reduction occurs mainly because of the competition between the organic adsorbate and the solvent for adsorption on the metallic surface. The semiquantitative agreement with experimental estimates for the adsorption energy of aromatic molecules thus validates the soundness of our hybrid QM/MM scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据