4.7 Article

A general automatic method for optimal construction of matrix product operators using bipartite graph theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0018149

关键词

-

资金

  1. National Natural Science Foundation of China through the project Science CEnter for Luminescence from Molecular Aggregates (SCELMA) [21788102]
  2. Ministry of Science and Technology of China through the National Key RD Plan [2017YFA0204501]
  3. Shuimu Tsinghua Scholar Program

向作者/读者索取更多资源

Constructing matrix product operators (MPOs) is at the core of the modern density matrix renormalization group (DMRG) and its time dependent formulation. For the DMRG to be conveniently used in different problems described by different Hamiltonians, in this work, we propose a new generic algorithm to construct the MPO of an arbitrary operator with a sum-of-products form based on the bipartite graph theory. We show that the method has the following advantages: (i) it is automatic in that only the definition of the operator is required; (ii) it is symbolic thus free of any numerical error; (iii) the complementary operator technique can be fully employed so that the resulting MPO is globally optimal for any given order of degrees of freedom; and (iv) the symmetry of the system could be fully employed to reduce the dimension of MPO. To demonstrate the effectiveness of the new algorithm, the MPOs of Hamiltonians ranging from the prototypical spin-boson model and the Holstein model to the more complicated ab initio electronic Hamiltonian and the anharmonic vibrational Hamiltonian with the sextic force field are constructed. It is found that for the former three cases, our automatic algorithm can reproduce exactly the same MPOs as the optimally hand-crafted ones already known in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据