4.6 Article

C-Terminal, but Not Intact, FGF23 and EPO Are Strongly Correlatively Elevated in Patients With Gain-of-Function Mutations in HIF2A: Clinical Evidence for EPO Regulating FGF23

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 36, 期 2, 页码 315-321

出版社

WILEY
DOI: 10.1002/jbmr.4195

关键词

PTH; VITD; FGF23; DISORDERS OF CALCIUM; PHOSPHATE METABOLISM; ENDOCRINE PATHWAYS; MOLECULAR PATHWAYS

资金

  1. Intramural Research Program of the NIDCR
  2. NICHD
  3. NCI, NIH

向作者/读者索取更多资源

FGF23 is a key hormone regulating phosphate and vitamin D, with complex pathways involved in its physiology. Studies suggest the HIF/EPO pathway may play a direct role in FGF23 transcription and translation. Research in rare cases highlights the finely tuned posttranslational regulation to maintain normal blood phosphate levels despite elevated C-terminal FGF23 levels.
Fibroblast growth factor 23 (FGF23) is a key phosphate- and vitamin D-regulating hormone. FGF23 circulates as an intact 251 amino acid protein or N- and C-terminal degradation products. Hormone activity resides in the intact molecule, but it has been suggested that high levels of the C-terminal protein can interfere with intact FGF23 (iFGF23) activity. New evidence points to involvement of the hypoxia-inducible factor (HIF)/erythropoietin (EPO)/iron pathway as important in FGF23 physiology. Exactly how this pathway regulates FGF23 is not clear. Various in vitro, in vivo, and clinical studies involving perturbations in this pathway at various points have yielded conflicting results. Many of these studies are complicated by the confounding, independent effect of renal insufficiency on FGF23. To gain insight into FGF23 physiology, we studied 8 patients with a rare paraganglioma/somatostatinoma syndrome who had elevated blood EPO levels as a result of somatic gain-of-function mutations in HIF2A (EPAS1) that stimulate tumoral EPO production. All patients had normal renal function. EPO levels varied; most were very elevated and highly correlated with C-terminal FGF23 (cFGF23) levels that were also markedly elevated. Blood phosphate and intact FGF23 levels were normal. These data from patients with normal renal function in whom HIF activation was the inciting event suggest a direct role of the HIF/EPO pathway in FGF23 transcription and translation. They also demonstrate that posttranslational regulation was finely tuned to maintain normal blood phosphate levels. Additionally, normal phosphate and intact FGF23 levels in the setting of markedly increased C-terminal FGF23 levels suggest intact FGF23 action is not attenuated by C-terminal FGF23. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据