4.5 Review

Comparison of simple expression procedures in novel expression host Vibrio natriegens and established Escherichia coli system

期刊

JOURNAL OF BIOTECHNOLOGY
卷 321, 期 -, 页码 57-67

出版社

ELSEVIER
DOI: 10.1016/j.jbiotec.2020.06.003

关键词

Vibrio natriegens; Escherichia coli; Human growth hormone; Fermentation

资金

  1. Slovak Research and Development Agency [APVV-15-0466, APVV-17-0333]
  2. ERDF within Research and Innovation Operational Programme [ITMS 26240220048, ITMS: 26240220034]

向作者/读者索取更多资源

Marine bacterium Vibrio natriegensis a novel host platform for different applications in molecular biology and biotechnology. It has one of the fastest growth rates of any known microorganisms and its extremely short doubling time indicates a high level of proteosynthetic activity. Regarding the necessity of developing new high-level protein expression systems it represents an extremely interesting subject. V. natriegens fulfills many important features for a suitable host including non- pathogenicity, easy scale-up process, potential for using alternative carbon sources (compared to E. coli), growth media and potential for further genetic and metabolic engineering with employment of a wide range of genetic tools. This work compares V. natriegens as an expression host for production of recombinant human growth hormone (hGH), yeast alcohol dehydrogenase (ADH) and archaeal catalase-peroxidase (AfKatG) to E. coliand establishes the basis for future development of this platform. The selected proteins are of different origins, sizes and intended applications. Our results have shown that cultures of V. natriegens using sucrose as a main carbon source can be used for the production of industrially applicable proteins, where it offers higher biomass productions compared to E. coli. In case of human growth hormone production, produced amounts were lower compared to those of E. coli (38 % of total cell protein (TCP) for V. natriegens vs. 58 % of TCP for E. coli, with similar solubility of around 40 % in both cases). In case of yeast alcohol dehydrogenase, V. natriegens produced 26 % of TCP vs. 42 % of TCP in E. coli, but with severely decreased solubility in case of V. natriegens cultures. Finally V. natriegens cultures were able to produce catalase-peroxidase AfKatG at the level of 33 % of TCP compared to 26 % of TCP in E. coli. Obtained results suggest that there are still significant differences in reliability and ease of use between E. coli and V. natriegens, with latter being more susceptible to condition changes and producing inconsistent results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据