4.6 Article

Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 295, 期 47, 页码 15933-15947

出版社

ELSEVIER
DOI: 10.1074/jbc.RA120.014530

关键词

DNA dynamics; sequencing; m1A; AlkB; echinomycin; DNA damage; DNA methylation; DNA repair; DNA structure; DNA sequencing; alkB; DNA dynamics; echinomycin; N1-methylated adenine

资金

  1. Mathers Foundation

向作者/读者索取更多资源

As the Watson-Crick faces of nucleobases are protected in dsDNA, it is commonly assumed that deleterious alkylation damage to the Watson-Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson-Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to ssDNA has not been quantified. Watson-Crick base pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base pairs that expose the Watson-Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson-Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson-Crick A-T base pairs in dsDNA only conferred similar to 130-fold protection against adenine-N1 methylation, and this protection was reduced to similar to 40-fold for A(syn)-T Hoogsteen base pairs embedded in a DNA-drug complex. Our results indicate that Watson-Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据