4.7 Article

AlCoCrFeNi high-entropy alloy particle reinforced 5083Al matrix composites with fine grain structure fabricated by submerged friction stir processing

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 836, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.155411

关键词

Composite; High-entropy alloy reinforcement; Submerged friction stir processing; Interface; Mechanical properties

资金

  1. Natural Science Foundation of China [51505321]
  2. Natural Science Foundation of Shanxi Province [201901D111106]

向作者/读者索取更多资源

In the present work, 5083Al matrix composites reinforced by 10 vol% AlCoCrFeNi high-entropy alloy (HEA) particles were fabricated by submerged friction stir processing (SFSP). It was found that the fabricated composites consist of equiaxed fi ne grains with the mean size of 1.2 mu m due to dynamic recrystallization, particle stimulated nucleation (PSN) and shortened thermal cycle by water cooling. The HEA/5083Al interface showed a two-layer structure, the layer close to the HEA exhibited FCC + T phases with the thickness of approximately100 nm, and the other layer consisted of the Cr-depleted AlCoCrFeNi HEA particles in the size of roughly 100 nm. The SFSPed HEA/5083Al composites showed 25.1% higher yield stress (YS) and 31.9% higher ultimate tensile strength (UTS) in comparison with the base metal while maintaining acceptable ductility (18.9%). Grain refinement, geometrically necessary dislocations and load transfer effect can mainly be responsible for the improved strength. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据