4.7 Article

Lipidomic Changes in Banana (Musa cavendish) during Ripening and Comparison of Extraction by Folch and Bligh-Dyer Methods

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 68, 期 40, 页码 11309-11316

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.0c04236

关键词

banana; lipidomic; peel; pulp; ripe; phospholipid

资金

  1. Guangdong Basic and Applied Basic Research Foundation, China [2019A1515110317]
  2. Guangdong (China) Innovative and Entrepreneurial Research Team Program [2016ZT06N258]
  3. National Natural Science Foundation of China [21777059]

向作者/读者索取更多资源

Banana (Musa cavendish) is one of the most popular fruits globally and is an important foodstuff in many regions, attributed to its high nutritional value. Contrast to its high consumption volume, relatively little research has been conducted on banana lipidome. In this study, two classic lipid extraction methods, Folch and Bligh-Dyer, were compared for studying the banana lipidome in both the peel and pulp by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lipidomic profiles were also investigated to understand the changes of lipid molecules during three ripening stages (unripe, ripe, and overripe), and differences in lipids from different origins were also compared. This study suggested that although both Folch and Bligh-Dyer methods allow lipidome investigation, the latter demonstrated advantage in rendering higher extraction efficiency for the majority of lipid molecules in banana samples, particularly in the pulp. In peel, there were differences in the trends of each lipid classes at various stages of maturity, while the majority of lipid classes in pulp reached the highest levels with reduced desaturation at ripe stage, consistent with previous studies. Moreover, the lipidomic profiles of bananas in different habitats differed significantly according to partial least-squares discriminant analysis. This study for the first time provided comprehensive atlas of lipidomic changes of Musa cavendish during maturity and in different origins. These findings will facilitate better understanding of biochemical changes in banana and offer new tools for food chemical analyses in the understanding of mechanisms underlying lipid metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据