4.7 Article

The rutting and stripping resistance of warm and hot mix asphalt using bio-additives

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 112, 期 -, 页码 128-139

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2016.02.166

关键词

WMA; Stripping; Rutting; MSCR; HWTD

资金

  1. Iowa Energy Center (IEC)

向作者/读者索取更多资源

Isosorbide distillation bottoms (IDB) are a co-product from the conversion of sorbitol to isosorbide and have been shown to improve low temperature binder performance when tested in the bending beam rheometer. With the successful inclusion of IDB into asphalt, other bio-chemical streams with similar properties to IDB are of interest. The incorporation of bio-additives that create softening of the binder require an evaluation of rutting resistance. To use bio-based chemical additives as a warm mix asphalt modifier, moisture susceptibility must also be examined. The objective of this paper is to evaluate how IDB and several new bio-derived material additives influence the rutting and stripping resistance in WMA binders and mixtures. Rutting resistance of short term age binder is evaluated using the multiple stress creep recovery (MSCR) test and hot mix asphalt (HMA) and WMA evaluation will employ the Hamburg Wheel-Tracking Device (HWTD) test. Reduced mixing and compaction temperatures were achieved with all bio-additives. MSCR and HWTD results using the bio-additives with non-polymer modified binder show no improvements but when with a polymer modified (PM) binder, all additives show statistical improvements in resistance to rutting and stripping compared to a PM control. (c) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据