4.6 Article

A dynamic phase field model with no attenuation of wave speed for rapid fracture instability in hyperelastic materials

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2020.07.004

关键词

Phase field model; Crack instability; Dynamic fracture; Hyperelastic materials

资金

  1. National Natural Science Foundation of China [51633009, 51790500]

向作者/读者索取更多资源

Numerical experiments on phase field modeling of the fracture in pre-strained hyperelastic materials reveal that the classical mechanical-based dynamic phase field model is ineffective in the framework of non-linear deformation. The aspiration to gain insight into rapid fracture instability motivated us to develop a novel dynamic phase field model characterized by wave velocity invariance, enabling crack propagation at a velocity approach to the asymptotic limit. Given that the numerical treatment of rapid fractures involves extremely high spatiotemporal resolution, robust explicit dynamics and a tried-and-tested multi-level hybrid adaptive mesh algorithm are invoked. More crucially, an original adaptive distorted mesh removal scheme (ADMR) was developed to cope with the intractable finite element mesh distortion problem in large deformation fractures. The detailed numerical implementation for entire procedures is outlined, and its reliability is verified by two quasi-static fracture benchmarks. Utilizing the proposed model and innovative algorithms, the arresting ultrahigh-speed crack oscillation and tip-splitting instabilities captured in the fracture experiments of brittle gels were successfully reproduced. The critical crack velocity at the onset of the instability is also identified, close to the experimental measurements. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据