4.7 Article

Hypoxic Melanoma Cells Deliver microRNAs to Dendritic Cells and Cytotoxic T Lymphocytes through Connexin-43 Channels

期刊

出版社

MDPI
DOI: 10.3390/ijms21207567

关键词

connexin-43; gap junctions; microRNAs; melanoma; hypoxia; cytotoxic T lymphocytes; dendritic cells; miR-192; zeb2

资金

  1. National Fund for Scientific and Technological Development (FONDECYT) [1171213, 11160380]
  2. Millennium Science Initiative from the Ministry for the Economy, Development and Tourism [P09/016-F]

向作者/读者索取更多资源

Alterations in microRNA (miRNA) profiles, induced by tumor microenvironment stressors, like hypoxia, allow cancer cells to acquire immune-resistance phenotypes. Indeed, hypoxia-induced miRNAs have been implicated in cancer progression through numerous cancer cell non-autonomous mechanisms, including the direct transfer of hypoxia-responsive miRNA from cancer to immune cells via extracellular vesicles. Connexin-43 (Cx43)-constituted gap junctions (GJs) have also been involved in miRNA intercellular mobilization, in other biological processes. In this report, we aimed to evaluate the involvement of Cx43-GJs in the shift of miRNAs induced by hypoxia, from hypoxic melanoma cells to dendritic cells and melanoma-specific cytotoxic T lymphocytes (CTLs). Using qRT-PCR arrays, we identified that miR-192-5p was strongly induced in hypoxic melanoma cells. Immune cells acquired this miRNA after co-culture with hypoxic melanoma cells. The transfer of miR-192-5p was inhibited when hypoxic melanoma cells expressed a dominant negative Cx43 mutant or when Cx43 expression was silenced using specific short-hairpin RNAs. Interestingly, miR-192-5p levels on CTLs after co-culture with hypoxic melanoma cells were inversely correlated with the cytotoxic activity of T cells and with ZEB2 mRNA expression, a validated immune-related target of miR-192-5p, which is also observed in vivo. Altogether, our data suggest that hypoxic melanoma cells may suppress CTLs cytotoxic activity by transferring hypoxia-induced miR-192-5p through a Cx43-GJs driven mechanism, constituting a resistance strategy for immunological tumor escape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据