4.7 Article

Comparison of three different solar collectors integrated with geothermal source for electricity and hydrogen production

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 56, 页码 31651-31666

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.08.236

关键词

Geothermal and solar energy; Solar collectors; Thermodynamics analyses; Organic rankine cycle; Power and hydrogen production; Energy and exergy efficiency

向作者/读者索取更多资源

In this study, an integrated system is proposed for mainly electricity and hydrogen production. Energy and exergy analyses of the system are also examined by using Engineering Equation Solver (EES, version 2019) under solar radiation during day time on 1st July. The proposed system consists of a middle-temperature geothermal source with fluid temperature 93 degrees C, three solar collectors (SCs of 300 m(2)) namely parabolic trough solar collectors (PTSCs), evacuated tube solar collectors (ETSCs), flat plate solar collectors (FPSCs), an organic Rankine cycle (ORC), proton exchange membrane (PEM), a compressor, hot water storage tank and a mushroom cultivation room. The temperature of the geothermal fluid is upgraded via solar collectors by harvesting solar radiation to operate the ORC. Thus the generated electricity is used in the PEM electrolysis system for producing hydrogen. When the PTSCs, ETSCs, and FPSCs are integrated with the geothermal source separately, it is found that 2758.69 g, 1585.27 g, and 634.42 g of hydrogen can be produced, respectively for a day. The highest overall energetic and exergetic performance of the system is calculated as to be 5.67% and 7.49%, respectively. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据