4.7 Article

Mesoscale Modeling of Exploiting Methane Hydrate by CO2 Replacement in Homogeneous Porous Media

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2020.119741

关键词

Gas hydrate dissociation; CO2 replacement; computational fluid dynamics; homogeneous porous media

资金

  1. Chung Yuan Christian University [109609432]

向作者/读者索取更多资源

In this study, the objective is to establish a general mesoscale model for replacement so as to precisely estimate the flux of methane hydrate dissociation and CO2 hydrate formation in the cage of hydrate. If homogeneous porous media is assumed, porosity (void fraction) of methane hydrate sediment can be obtained from silica packing in experiment. Based on considering the driving force of free energy in dissociation and formation processes, a new modeling of replacement process is established by considering the individual flux of hydrate surface at stable and unstable regions of CH4 hydrate. At stable CH4 and CO2 hydrates region, it provides a simple situation of discussing the recovery process which CO2 guest particle replaces CH4 in hydrate due to free energy difference. Here, the formation rate of CO2 hydrate is dominated by the dissociation rate of CH4. However, large amount of CH4 dissociated at the surface of hydrate at unstable region. The formation rate become dominated by the formation flux of CO2 hydrate itself. In addition, the high-pressure effect of accelerating the guest gas trapped in hydrate is also considered by applying kinetic theory of gases. By applying CFD method and unstructured grid, it is possible to consider momentum, concentration and thermal distributions in non-equilibrium state simultaneously. To compare with experimental results, flux of methane hydrate dissociation at high surface concentration in simulation are consistent with experiment. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据