4.7 Article

Flow field simulation and pressure drop modeling by a porous medium inPEMfuel cells

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 46, 期 1, 页码 163-177

出版社

WILEY
DOI: 10.1002/er.6047

关键词

fuel cell stack; numerical simulation; porous medium; power-law model; pressure drop; uniformity

资金

  1. Ministry of Science and Technology, Taiwan

向作者/读者索取更多资源

This study aims to analyze the correlation of pressure drop in fuel cell stacks and develop a model to predict flow and pressure drop. The results show that the lower the number of cells, the more uniform the pressure drop. This model is useful for designing flow channels for fuel cell stacks with a large number of cells.
For proton-exchange membrane fuel cells, the distribution of reactant flow in the stack is critical to the fuel cell's efficiency. The uneven distribution of reactant flow in the stack may cause poor current density, low performance, and material degradation. To understand and accurately predict the flow field in the proton-exchange membrane fuel cell system, the present study aims to develop a simple correlation to analyze the pressure drop in fuel cell stacks. The flow channel in each cell of a stack is treated as a porous medium, and a power-law model is used to approximate the porous medium momentum source term. For the stacks with fewer cell numbers, namely, 1, 5, and 10 cells, the parameters in the power law are established based on the experimental data. Then, a correlation is developed to simulate the flow and predict the pressure drop in the stack with higher cell numbers (ie, 20 and 40 cells). The simulations show that the pressure drop in each cell of a stack is almost invariable, and the average pressure drop decreases with increasing the number of cells. The flow uniformity in the stacks with different cell numbers is evaluated using the dimensionless pressure drop and the pressure drop ratios. It suggests that the lower the cell number, the more uniform the pressure drop. The developed model is conducive to efficiently designing the flow channel for a fuel cell stack with large cell numbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据