4.7 Article

Analytical solutions of heat storage and heat transfer performance ofparallel-plateregenerators in Stirling cycle

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 45, 期 2, 页码 3327-3342

出版社

WILEY
DOI: 10.1002/er.6030

关键词

heat storage efficiency; heat transfer coefficient; parallel-plate regenerator; Stirling cycle

资金

  1. Fundamental Research Funds for the Central Universities [2017XKZD05]

向作者/读者索取更多资源

The relative thickness e plays a crucial role in the heat storage efficiency and heat transfer coefficient of parallel-plate regenerators (PPR), and by comprehensively considering e, the performance of PPR can be optimized.
Parallel-plate regenerators (PPR), with flow resistance lower than traditional wire-mesh regenerators, can improve the thermal efficiency of Stirling engines (SEs). However, as working frequency or plate thickness increase, the heat cannot penetrate into the plate effectively, resulting only the surface part of the plates to have substantial temperature variation, while the internal part fails to store and exchange heat energy. In order to obtain high performance of PPR, the heat storage efficiency and the heat transfer coefficient, as well as their influential factors, are theoretically studied. Three parameters are found to play an important role, which are working frequency, plate thickness, and thermal diffusivity of materials. Their roles can be represented by a dimensionless parameter as a whole, which is the relative thickness,e. By the critical value of relative thickness,e(cr)= 2.4, two distinct working conditions can be divided, thermally penetrated condition ase < e(cr)and thermally non-penetrated condition ase > e(cr). Under thermally penetrated condition, the heat storage efficiency is high, and the heat transfer coefficient is high enough whene > 1.6, while under thermally non-penetrated condition, the heat storage efficiency is low. In conclusion, by comprehensively considering the heat storage efficiency and heat transfer coefficient, it is recommended that the relative thicknesseshould be chosen within the range [1.6, 2.4].And the optimal working frequency, plate thickness, and suitable material can be determined accordingly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据