4.7 Article

Topology optimization of microstructure of solid-oxide fuel cell anode to minimize thermal mismatch

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 45, 期 2, 页码 3214-3230

出版社

WILEY
DOI: 10.1002/er.6018

关键词

microstructure; solid-oxide fuel cell; thermal mismatch; topology optimization

资金

  1. National Natural Science Foundation of China [51737011, 51776172]

向作者/读者索取更多资源

The thermomechanical reliability and lifetime of solid-oxide fuel cells are significantly affected by thermal mismatch between anode and electrolyte layers. This study presents a numerical analysis of topology optimization of the microstructure of Ni-8YSZ anode to minimize the thermal mismatch. The optimized microstructures show high three-phase boundary density and increased Ni-pore interfacial areas, providing potential for enhancing ion conductivities and aiding in the design of future electrodes.
Thermomechanical reliability and lifetime of solid-oxide fuel cells are significantly influenced by thermal mismatch between anode and electrolyte layers. This study presents a numerical analysis of topology optimization of the microstructure of Ni-8YSZ anode to minimize the thermal mismatch of the components. We obtain two 2D microstructures by taking minimum thermal mismatch as object function. The 3D microstructures become fibrous and orthogonal by stretching the 2D microstructures. Results show that the coefficients of thermal expansion of microstructures in the plane parallel to the electrolyte layer are almost equal to those of electrolytes from room temperature to 800 degrees C, which almost completely removes the thermal mismatch. Both microstructures have high three-phase boundary density, which is almost twice or five times that of a typical anode. Compared with the typical anodes, the microstructures have higher Ni-pore interfacial areas and ion conductivities. Optimization results are helpful in the design of future electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据