4.7 Article

Enhancing proton conductivity of phosphoric acid-doped Kevlar nanofibers membranes by incorporating polyacrylamide and1-butyl-3-methylimidazoliumchloride

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 44, 期 14, 页码 11772-11782

出版社

WILEY
DOI: 10.1002/er.5818

关键词

1-butyl-3-methylimidazolium chloride; freeze-drying technique; Kevlar nanofibers; phosphoric acid; polyacrylamide; proton conductivity

资金

  1. Fundamental Research Funds for the Central Universities [N2005001]
  2. National Natural Science Foundation of China [21703029]
  3. Natural Science Foundation of Liaoning Province [20180550033]

向作者/读者索取更多资源

Freeze-drying (fd) technique is an effective and facile method to accumulate nanofibers for membrane preparation, and it has been frequently reported in the development of energy materials. Kevlar as amide nanofibers (ANFs) could serve as support materials for proton exchange membranes (PEMs) owing to the merits of exceptional stiffness and strength, etc. The aim of this research is to enhance the proton conductivity of phosphoric acid (PA)-doped Kevlar membranes by incorporating polyacrylamide (PAM) and 1-butyl-3-methylimidazolium chloride (bmimCl) with freeze-drying technique. The components of PAM and bmimCl could provide the binding sites to combine PA molecules with the formation of Kevlar/PAM/bmimCl/PA membranes. Furthermore, the prepared membranes with the freeze-drying posttreatment are substantially more effective at enhancing proton conductivity owing to the combination of more PA molecules. Specifically, Kevlar/PAM/bmimCl(fd)/PA membranes showed the anhydrous proton conductivity of 2.64 x 10(-1)S/cm at 180 degrees C and 1.04 x 10(-1)S/cm at 140 degrees C in a 270-hour non-stop test. As regard to the prepared PA-doped Kevlar/CdTe-based membranes, the mechanical strength was far from what was expected. Comparing to the solution casting method, the freeze-drying technique was a feasible strategy to deal with ANFs for exploiting high-temperature PEMs with high performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据