4.7 Article

Pixel-Wise Crowd Understanding via Synthetic Data

期刊

出版社

SPRINGER
DOI: 10.1007/s11263-020-01365-4

关键词

Crowd analysis; Pixel-wise understanding; Crowd counting; Crowd segmentation; Synthetic data generation

资金

  1. National Key R&D Program of China [2017YFB1002202]
  2. National Natural Science Foundation of China [U1864204, 61773316, 61632018, 61825603]

向作者/读者索取更多资源

This paper explores crowd analysis using computer vision techniques, focusing on pixel-wise crowd understanding. By developing a synthetic dataset called GCC Dataset and proposing two methods to improve crowd understanding, the study aims to achieve better performance in real-world scenarios.
Crowd analysis via computer vision techniques is an important topic in the field of video surveillance, which has wide-spread applications including crowd monitoring, public safety, space design and so on. Pixel-wise crowd understanding is the most fundamental task in crowd analysis because of its finer results for video sequences or still images than other analysis tasks. Unfortunately, pixel-level understanding needs a large amount of labeled training data. Annotating them is an expensive work, which causes that current crowd datasets are small. As a result, most algorithms suffer from over-fitting to varying degrees. In this paper, take crowd counting and segmentation as examples from the pixel-wise crowd understanding, we attempt to remedy these problems from two aspects, namely data and methodology. Firstly, we develop a free data collector and labeler to generate synthetic and labeled crowd scenes in a computer game, Grand Theft Auto V. Then we use it to construct a large-scale, diverse synthetic crowd dataset, which is named as GCC Dataset. Secondly, we propose two simple methods to improve the performance of crowd understanding via exploiting the synthetic data. To be specific, (1) supervised crowd understanding: pre-train a crowd analysis model on the synthetic data, then fine-tune it using the real data and labels, which makes the model perform better on the real world; (2) crowd understanding via domain adaptation: translate the synthetic data to photo-realistic images, then train the model on translated data and labels. As a result, the trained model works well in real crowd scenes.Extensive experiments verify that the supervision algorithm outperforms the state-of-the-art performance on four real datasets: UCF_CC_50, UCF-QNRF, and Shanghai Tech Part A/B Dataset. The above results show the effectiveness, values of synthetic GCC for the pixel-wise crowd understanding. The tools of collecting/labeling data, the proposed synthetic dataset and the source code for counting models are available at.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据