4.5 Article

New neurophysiological human thermal model based on thermoreceptor responses

期刊

INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
卷 64, 期 12, 页码 2007-2017

出版社

SPRINGER
DOI: 10.1007/s00484-020-01990-1

关键词

Human thermoregulation model; Thermoreceptor; Neurophysiology; Non-uniform transient environments

资金

  1. CSTB (Centre Scientifique et Technique du batiment, Nantes, France)

向作者/读者索取更多资源

A new neurophysiological human thermal model based on thermoreceptor responses, the NHTM model, has been developed to predict regulatory responses and physiological variables in asymmetric transient environments. The passive system is based on Wissler's model, which is more complex and refined. Wissler's model segments the human body into 21 cylindrical parts. Each part is divided into 21 layers, 15 for the tissues and 6 for clothes, and each layer is divided into 12 angular sectors. Thus, we have 3780 nodes for the tissues and 1512 for clothes. The passive system simulates heat exchange within the body and between the body and the surroundings. The active system is composed of the thermoregulatory mechanisms, i.e., skin blood flow, shivering thermogenesis, and sweating. The skin blood flow model and the shivering model are based on thermoreceptor responses. The sweating model is that of Fiala et al. and is based on error signals. The NHTM model was compared with Wissler's model, and the results showed that a calculation based on neurophysiology can improve the performance of the thermoregulation model. The NHTM model was more accurate in the prediction of mean skin temperature, with a mean absolute error of 0.27 degrees C versus 0.80 degrees C for the original Wissler model. The prediction accuracy of the NHTM model for local skin temperatures and core temperature could be improved via an optimization method to prove the ability of the new thermoregulation model to fit with the physiological characteristics of different populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据