4.7 Article

Effect of chitosan infiltration on hydroxyapatite scaffolds derived from New Zealand bovine cancellous bones for bone regeneration

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.05.269

关键词

Hydroxyapatite; Bovine bone; Chitosan; Mechanical strength; Biodegradation; Biocompatibility

向作者/读者索取更多资源

Hydroxyapatite (HA) derived from bovine bones garnered wider interest as a bone substitute due to their abundant availability as meat wastes and similarities in morphology and mineral composition to human bone. In our previous work, we developed an easy and reproducible method to prepare xenograft HA scaffolds from NZ bovine cancellous bones (BHA). However, the processing methodology rendered the material mechanically weak. The present study investigated the infiltration of chitosan (CS) into the bovine HA scaffolds (CSHA) to improve the mechanical properties of BHA. The presence of characteristic functional groups of HA and CS as detected by infrared spectroscopy confirmed the infiltration of CS into the BHA scaffolds. X-ray Diffraction study confirmed the presence of the hydroxyapatite phase in both BHA and CSHA scaffolds. SEM and mu CT analyses showed the CSHA scaffolds presented adequate porosity and an interconnected porous architecture required for cell migration and attachment. CSHA scaffolds presented good thermal, chemical and structural stabilitywhile demonstrating sustained biodegradability in simulated body fluid. CSHA scaffolds presented mechanical properties significantly higher than the BHA scaffolds. CSHA scaffolds were biocompatible with Saos-2 osteoblast cells and supported cell proliferation significantly better than the BHA scaffolds indicating their potential in bone tissue engineering. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据