4.7 Article

Optimization of extraction with salicylic acid, rheological behavior and antiproliferative activity of pectin from Citrus sinensis peels

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.05.125

关键词

Box-Behnken design; Pectin; Salicylic acid; Rheological behavior; Antiproliferative activity

资金

  1. Tunisian Ministry of Higher Education and Scientific Research
  2. Normandy region
  3. European Union

向作者/读者索取更多资源

A Box-Behnken design was used to optimize extraction temperature, extraction time and concentration of the salicylic acid to obtain a maximum polysaccharide yield from Citrus sinensis peels. The optimal settings were: extraction time 3 h, extraction temperature 80 degrees C and concentration of the salicylic acid 1.5%. Under these conditions, the experimental yield and uronic acid content were 11.74% and 66.9% respectively. Preliminary characterization was performed via FT-IR, SEC/MALS/VD/DRI and GC-MS after hydrolysis. SEC analysis showed that the extracted polysaccharide had a weight average molar mass of 350 kDa and an intrinsic viscosity of 640 mL/g. The GC-MS results revealed that the extracted polysaccharide was composed of arabinose 56.7%, galactose 17.8%, xylose 13.8%, rhamnose 5.1%, mannose 2.5% and glucose 1.5% suggested a rhamnogalacturonan pectin type I with a degree of esterification of 50.9% (IRTF). The flow curve and the dynamic frequency sweep were obtained at 10, 20, 30 and 40 g/L in water and at 30 g/L in presence of CaCl2 or NaCl at 1 mol/L. The solutions showed shear-thinning behavior fitted with Ostwald-De Waele model, except 10 g/L with a Newtonian behavior. The apparent viscosity and, the G' and G moduli increase with PACO concentration in agreement with a slowdown of the dynamic chain. In the presence of CaCl2 or NaCl the reduction of electrostatic repulsions between pectin chains decreases the rheological parameters. The effect is less sensitive with CaCl2 due to intermolecular interactions. The antiproliferative activity of the extracted pectin on human Caco-2 and Hep-2 cells was very interesting with an IC(50)1.4 and 1.8 mu g/mL respectively. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据