4.6 Article

A smart tool wear prediction model in drilling of woven composites

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-020-06049-4

关键词

Woven composites; Tool wear; Drilling; Modeling; Machine learning

向作者/读者索取更多资源

Undetected tool wear during drilling of woven composites can cause laminate damage and fiber pull-out and fuzzing, causing subsurface damage. This diminishes the life of the produced part under fatigue loads. Thus, the producing of proper and reliable holes in woven composites requires accurate monitoring of the cutting tool wear level to safeguard the machined parts and increase process productivity and profitability. Available tool condition monitoring (TCM) systems mainly require long development lead time and extensive experimental efforts to predict the tool wear within predefined values of cutting conditions. The changes in these values require system relearning. Therefore, developing of a smart generalized TCM system that can accurately predict tool wear based on unlearned data during drilling of woven composite plates is crucial. In this work, an attempt was presented and discussed to predict the tool wear in drilling of woven composite plates at different and wide range of cutting conditions based on the drilling forces using biased learning data. A generalized heuristic model was proposed to accurately predict tool wear value. The performance of the proposed model was benchmarked with respect to four machine learning techniques namely regression tree, support vector machine (SVM), Gaussian process regression (GPR), and artificial neural network (ANN). Extensive experimental validation tests have showed that the GPR model has offered the lowest prediction error based on a reduced biased learning dataset, which represents 50% reduction in learning efforts compared with available literature. However, the developed heuristic model showed a comparable accuracy using significantly less learning efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据