4.2 Article

Modeling and Design of a Piezoelectric Nonlinear Aeroelastic Energy Harvester

期刊

INTEGRATED FERROELECTRICS
卷 211, 期 1, 页码 132-151

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10584587.2020.1803681

关键词

Piezoelectric; fluid-structure interaction; aeroelasticity; energy harvesting; nonlinear; electromechanical; performance

向作者/读者索取更多资源

In the present era, the possibility to generate electrical energy from an operational environment is a critical factor for an aerospace industry to drive microelectronic components. In this research, a solution for the energy harvesting mechanism based on fluid-structure interaction (FSI) is investigated. The possibility to harvest energy from post-critical aeroelastic behavior, known as Limit Cycle Oscillations (LCOs) through piezoelectric transduction is presented. A typical condition for energy harvesting, which requires a strong interaction between the external energy and the components where the harvester is embedded. The LCOs arise after the flutter speed in nonlinear aeroelastic systems, and these oscillations are utilized for harvesting phenomenon. The analytical model is developed for both the FSI and electromechanical behavior of the piezoelectric harvester. In particular, the importance of the aerodynamic model for determining the performance of the harvester is stressed. Two different piezoelectric materials, i.e. Lead zirconate titanate (PZT-5A) and Barium titanate (BaTiO3) is used in the designed harvester. The presented model is suitable to harvest energy and to drive wireless sensors. The maximum power output obtained by the designed piezoelectric aeroelastic energy harvester (PAEH) is found to be 5.5 mW for 0.1 m ohm of resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据