4.4 Article

Scalable in-hospital decontamination of N95 filtering face-piece respirator with a peracetic acid room disinfection system

期刊

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY
卷 42, 期 6, 页码 678-687

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/ice.2020.1257

关键词

-

向作者/读者索取更多资源

The study successfully utilized an ultrasonic room high-level disinfection system for decontamination of large numbers of N95 respirators, achieving effective disinfection without adverse effects on mask filtration efficiency or material integrity.
Background: Critical shortages of personal protective equipment, especially N95 respirators, during the coronavirus disease 2019 (COVID-19) pandemic continues to be a source of concern. Novel methods of N95 filtering face-piece respirator decontamination that can be scaled-up for in-hospital use can help address this concern and keep healthcare workers (HCWs) safe. Methods: A multidisciplinary pragmatic study was conducted to evaluate the use of an ultrasonic room high-level disinfection system (HLDS) that generates aerosolized peracetic acid (PAA) and hydrogen peroxide for decontamination of large numbers of N95 respirators. A cycle duration that consistently achieved disinfection of N95 respirators (defined as >= 6 log(10) reductions in bacteriophage MS2 and Geobacillus stearothermophilus spores inoculated onto respirators) was identified. The treated masks were assessed for changes to their hydrophobicity, material structure, strap elasticity, and filtration efficiency. PAA and hydrogen peroxide off-gassing from treated masks were also assessed. Results: The PAA room HLDS was effective for disinfection of bacteriophage MS2 and G. stearothermophilus spores on respirators in a 2,447 cubic-foot (69.6 cubic-meter) room with an aerosol deployment time of 16 minutes and a dwell time of 32 minutes. The total cycle time was 1 hour and 16 minutes. After 5 treatment cycles, no adverse effects were detected on filtration efficiency, structural integrity, or strap elasticity. There was no detectable off-gassing of PAA and hydrogen peroxide from the treated masks at 20 and 60 minutes after the disinfection cycle, respectively. Conclusion: The PAA room disinfection system provides a rapidly scalable solution for in-hospital decontamination of large numbers of N95 respirators during the COVID-19 pandemic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据