4.7 Article

A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding

期刊

COMPUTERS AND ELECTRONICS IN AGRICULTURE
卷 128, 期 -, 页码 181-192

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compag.2016.08.021

关键词

High throughput field phenotyping; Canopy reflectance; Canopy temperature; LabVIEW; RGB image

资金

  1. National Science Foundation of the United States [DBI-1556186]
  2. Nebraska Soybean Board
  3. Nebraska Wheat Board
  4. Agricultural Research Division of University of Nebraska-Lincoln
  5. Direct For Biological Sciences
  6. Div Of Biological Infrastructure [1556186] Funding Source: National Science Foundation

向作者/读者索取更多资源

Collecting plant phenotypic data with sufficient resolution (in both space and time) and accuracy represents a long standing challenge in plant science research, and has been a major limiting factor for the effective use of genomic data for crop improvement. This is particularly true in plant breeding where collecting large-scale field-based plant phenotypes can be very labor intensive and costly. In this paper we reported a multi-sensor system for high throughput phenotyping in plant breeding. The system comprised five sensor modules (ultrasonic distance sensors, thermal infrared radiometers, NDVI sensors, portable spectrometers, and RGB web cameras) to measure crop canopy traits from field plots. A GPS was used to geo-reference the sensor measurements. Two environmental sensors (a solar radiation sensor and air temperature/relative humidity sensor) were also integrated into the system to collect simultaneous environmental data. A LabVIEW program was developed to control and synchronize measurements from all sensor modules and stored sensor readings in the host computer. Canopy reflectance spectra (by portable spectrometers) were post processed to extract NDVI and red-edge NDVI spectral indices; and RGB images were post processed to extract canopy green pixel fraction (as a proxy for biomass). The sensor system was tested in a soybean and wheat field trial. The results showed strong correlations among the sensor-based plant traits at both early and late growing season. Significant correlations were also found between the sensor-based traits and final grain yield at the early season (Pearson's correlation coefficient r ranged from 0.41 to 0.55) and late season (r from 0.55 to 0.70), suggesting the potential use of the sensor system to assist in phenotypic selection for plant breeding. The sensor system performed satisfactorily and robustly in the field tests. It was concluded that the sensor system could be a powerful tool for plant breeders to collect field-based, high throughput plant phenotyping data. (C) 2016 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据