4.8 Article

A Comprehensive Analysis of Deep Regression

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2019.2910523

关键词

Computer architecture; Task analysis; Pose estimation; Computer vision; Systematics; Deep learning; Benchmark testing; Deep learning; regression; computer vision; convolutional neural networks; statistical significance; empirical and systematic evaluation; head-pose estimation; full-body pose estimation; facial landmark detection

资金

  1. EU funding via the FP7 ERC Advanced Grant VHIA [340113]

向作者/读者索取更多资源

Deep learning revolutionized data science, and recently its popularity has grown exponentially, as did the amount of papers employing deep networks. Vision tasks, such as human pose estimation, did not escape from this trend. There is a large number of deep models, where small changes in the network architecture, or in the data pre-processing, together with the stochastic nature of the optimization procedures, produce notably different results, making extremely difficult to sift methods that significantly outperform others. This situation motivates the current study, in which we perform a systematic evaluation and statistical analysis of vanilla deep regression, i.e., convolutional neural networks with a linear regression top layer. This is the first comprehensive analysis of deep regression techniques. We perform experiments on four vision problems, and report confidence intervals for the median performance as well as the statistical significance of the results, if any. Surprisingly, the variability due to different data pre-processing procedures generally eclipses the variability due to modifications in the network architecture. Our results reinforce the hypothesis according to which, in general, a general-purpose network (e.g., VGG-16 or ResNet-50) adequately tuned can yield results close to the state-of-the-art without having to resort to more complex and ad-hoc regression models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据