4.7 Article

An Energy-Efficient Train Operation Approach by Integrating the Metro Timetabling and Eco-Driving

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2019.2939358

关键词

Energy consumption; Optimization; Acceleration; Switches; Dynamic programming; Rails; Mathematical model; Energy conservation; timetable; scheduling; train control; regenerative energy

资金

  1. National Natural Science Foundation of China [U1734210, U1734211, 61803021]
  2. Beijing Natural Science Foundation The Joint Rail Transit [L171007]
  3. State Key Laboratory of Rail Traffic Control and Safety [RCS2019K009]

向作者/读者索取更多资源

Energy-efficient train operation is regarded as an effective way to reduce the operational cost and carbon emissions in metro systems. Reduction of the traction energy and increasing of the regenerative energy are two important ways for saving energy, which is closely related to the train timetable and driving strategy. To minimize the systematic net energy consumption, i.e., the difference between the traction energy consumption and the reused regenerative energy, this paper proposes an integrated train operation approach by jointly optimizing the train timetable and driving strategy. A precise train driving strategy is presented and the timetable model considers the headway between successive trains, the distribution of the trip time, and passenger demand in this paper. In addition, a distributed regenerative braking energy model is proposed, based on which the integrated optimization model is formulated. Then, a two-level approach is proposed to solve the problem. At the driving strategy level, the train control problem is transferred into a multi-step decision problem and the Dynamic Programming method is introduced to calculate the energy-efficient driving strategy with the given trip time. As for the timetable level, the trip times and headway of trains are optimized by using the Simulated Annealing algorithm based on the results of dynamic programming method. The timetable optimization level balances the mechanical traction energy of multi-interstations and the amount of the reused regenerative energy such that the net mechanical energy consumption of the metro system is minimized. Furthermore, two numerical examples are conducted for train operations in the peak and off-peak hours separately based on the real-world data of a metro line. The simulation results illustrate that the proposed approach can produce a good performance on energy-saving.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据