4.5 Article

Local Electromechanical Response in Doped Ceria: Rigorous Analysis of the Phase and Amplitude

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TDEI.2020.008942

关键词

cerium oxide; electrochemical strain microscopy; electrostriction; oxygen vacancies; phase

资金

  1. Ministry of Education and Science of the Russian Federation [02.A03.21.0006]
  2. FCT/MEC [UIDB/50011/2020, UIDP/50011/2020]
  3. FEDER under the PT2020 Partnership Agreement

向作者/读者索取更多资源

Characterization of the ionic transport and corresponding electro-elastic deformations in cerium oxide at the nanoscale are important for the understanding of the mechanism of the local response under an external electric field, especially the mechanisms of the 'non-Newnham''-type giant electrostriction. Here, we introduce a methodological approach to the analysis of signals in the piezoresponse force microscopy/electrochemical strain microscopy allowing decoupling ionic motion, electrostriction, and electrostatic contributions to the electromechanical signals based on a precise analysis of the electromechanical amplitude and phase as a function of temperature, and AC and DC biases. The ionic motion was demonstrated to be hampered in a 30-300 degrees C temperature range, the typical operational range of commercial SPM microscopes. The local electromechanical response was interpreted as a mixture of the electrostatic-force-meditated response and conventional electrostriction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据