4.7 Article

Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization

期刊

IEEE TRANSACTIONS ON COMMUNICATIONS
卷 68, 期 9, 页码 5849-5863

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2020.3001125

关键词

Array signal processing; Wireless communication; Optimization; Signal to noise ratio; Semiconductor devices; Dielectric losses; Metals; Intelligent reflecting surface; passive array; beamforming optimization; phase shift model

向作者/读者索取更多资源

Intelligent reflecting surface (IRS) that enables the control of wireless propagation environment has recently emerged as a promising cost-effective technology for boosting the spectral and energy efficiency of future wireless communication systems. Prior works on IRS are mainly based on the ideal phase shift model assuming full signal reflection by each of its elements regardless of the phase shift, which, however, is practically difficult to realize. In contrast, we propose in this paper a practical phase shift model that captures the phase-dependent amplitude variation in the element-wise reflection design. Based on the proposed model and considering an IRS-aided multiuser system with one IRS deployed to assist in the downlink communications from a multi-antenna access point (AP) to multiple single-antenna users, we formulate an optimization problem to minimize the total transmit power at the AP by jointly designing the AP transmit beamforming and the IRS reflect beamforming, subject to the users' individual signal-to-interference-plus-noise ratio (SINR) constraints. Iterative algorithms are proposed to find suboptimal solutions to this problem efficiently by utilizing the alternating optimization (AO) as well as penalty-based optimization techniques. Moreover, to draw essential insight, we analyze the asymptotic performance loss of the IRS-aided system that employs practical phase shifters but assumes the ideal phase shift model for beamforming optimization, as the number of IRS elements goes to infinity. Simulation results unveil substantial performance gains achieved by the proposed beamforming optimization based on the practical phase shift model as compared to the conventional ideal model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据