4.6 Article

Deep Learning-Based Spectrum Sensing in Cognitive Radio: A CNN-LSTM Approach

期刊

IEEE COMMUNICATIONS LETTERS
卷 24, 期 10, 页码 2196-2200

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LCOMM.2020.3002073

关键词

Feature extraction; Detectors; Covariance matrices; Hidden Markov models; Data models; Deep learning; CNN; cognitive radio; deep learning; LSTM; spectrum sensing

资金

  1. National Natural Science Foundation of China [61934008, 61871091, 61801082]

向作者/读者索取更多资源

For most existing spectrum sensing detectors, the design of their test statistics relies on certain signal-noise model assumptions and hence, their detection performance heavily depends on the accuracy of the assumed models. Therefore, recently, much attention in the research of spectrum sensing is focused on deep learning which is free from model assumptions. Note that, in deep learning, the convolutional neural networks (CNNs) and the long-short term memory (LSTM) networks have the powerful capabilities in extracting spatial and temporal features of the input, respectively. In this letter, we propose a CNN-LSTM detector which first uses the CNN to extract the energy-correlation features from the covariance matrices generated by the sensing data, then the series of energy-correlation features corresponding to multiple sensing periods are input into the LSTM so that the PU activity pattern can be learned. The purpose of learning PU activity pattern is to further promote the detection probability. With sufficient simulations, the superiority of the CNN-LSTM detector is proven in scenarios with and without noise uncertainty.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据