4.5 Article

A rolling horizon approach for stochastic mixed complementarity problems with endogenous learning: Application to natural gas markets

期刊

COMPUTERS & OPERATIONS RESEARCH
卷 68, 期 -, 页码 1-15

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cor.2015.10.013

关键词

Rolling horizon; Stochastic mixed complementarity problem; Natural gas market; Game theory

资金

  1. Science Foundation Ireland [09/SRC/E1780]

向作者/读者索取更多资源

In this paper we present a new approach for solving energy market equilibria that is an extension of the classical Nash-Cournot approach. Specifically, besides allowing the market participants to decide on their own decision variables such as production, flows or the like, we allow them to compete in terms of adjusting the data in the problem such as scenario probabilities and costs, consistent with a dynamic, more realistic approach to these markets. Such a problem in its original form is very hard to solve given the product of terms involving decision-dependent data and the variables themselves. Moreover, in its more general form, the players can affect not only each others' objective functions but also the constraint sets of opponents making such a formulation a more complicated instance of generalized Nash problems. This new approach involves solving a sequence of stochastic mixed complementarity (MCP) problems where only partial foresight is used, i.e., a rolling horizon. Each stochastic MCP or roll, involves a look ahead for a fixed number of time periods with learning on the part of the players to approximate the extended Nash paradigm. Such partial foresight stochastic MCPs also offer a realism advantage over more traditional perfect foresight formulations. Additionally, the rolling-horizon approach offers a computational advantage over scenario-reduction methods as is demonstrated with numerical tests on a natural gas market stochastic MCP. Lastly, we introduce a new concept, the Value of the Rolling Horizon (VoRH) to measure the closeness of different rolling horizon schemes to a perfect foresight benchmark and provide some numerical tests on it using a stylized natural gas market. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据