4.8 Article

Total organic carbon concentrations in ecosystem solutions of a remote tropical montane forest respond to global environmental change

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 12, 页码 6989-7005

出版社

WILEY
DOI: 10.1111/gcb.15351

关键词

carbon; nitrogen ratio; carbon-14 dating; dissolved organic matter; rainfall; soil solution; stemflow; streamflow; throughfall

资金

  1. Deutsche Forschungsgemeinschaft (DFG)

向作者/读者索取更多资源

The response of organic carbon (C) concentrations in ecosystem solutions to environmental change affects the release of dissolved organic matter (DOM) from forests to surface and groundwaters. We determined the total organic C (TOC) concentrations (filtered <1-7 mu m) and the ratios of TOC/dissolved organic nitrogen (DON) concentrations, electrical conductivity (EC), and pH in all major ecosystem solutions of a tropical montane forest from 1998 to 2013. The forest was located on the rim of the Amazon basin in Ecuador and experienced increasing numbers of days with >25 degrees C, decreasing soil moisture, and rising nitrogen (N) deposition from the atmosphere during the study period. In rainfall, throughfall, mineral soil solutions (at the 0.15- and 0.30-m depths), and streamflow, TOC concentrations and fluxes decreased significantly from 1998 to 2013, while they increased in stemflow. TOC/DON ratios decreased significantly in rainfall, throughfall, soil solution at the 0.15-m depth, and streamflow. Based on Delta C-14 values, the TOC in rainfall and mineral soil solutions was 1 year old and that of litter leachate was 10 years old. The pH in litter leachate decreased with time, that in mineral soil solutions increased, while those in the other ecosystem solutions did not change. Thus, reduced TOC solubility because of lower pH values cannot explain the negative trends in TOC concentrations in most ecosystem solutions. The increasing TOC concentrations and EC in stemflow pointed at an increased leaching of TOC and other ions from the bark. Our results suggest an accelerated degradation of DOM, particularly of young DOM, associated with the production of N-rich compounds simultaneously to changing climatic conditions and increasing N availability. Thus, environmental change increased the CO(2)release to the atmosphere but reduced DOM export to surface and groundwater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据