4.5 Article

Crustal Accretion in a Slow Spreading Back-Arc Basin: Insights From the Mado Megamullion Oceanic Core Complex in the Shikoku Basin

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 21, 期 11, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020GC009199

关键词

oceanic core complex; back‐ arc basin; Shikoku Basin; lower oceanic crust; mylonite; felsic veins

资金

  1. Atmosphere and Ocean Research Institute, University of Tokyo
  2. Japan Agency for Earth-Marine Science and Technology
  3. Italian Ministry of Education, University and Research (MIUR) [2017KX5ZX8]
  4. Japan Society for the Promotion of Science [16H06347]

向作者/读者索取更多资源

Oceanic core complexes (OCCs) represent tectonic windows into the oceanic lower crust and mantle; they are key structures in understanding the tectono-magmatic processes shaping the oceanic lithosphere. We present a petrological and geochemical study of gabbros collected at the Mado Megamullion, a recently discovered OCC located in the extinct Shikoku back-arc basin. Bathymetry of the Mado Megamullion reveals spreading-parallel corrugations extending 25 km from the breakaway to the termination. Samples from several locations include peridotites, gabbros, dolerite, and rare pillow basalts. Gabbros range from granular to varitextured olivine gabbros and oxide gabbros. The emplacement of these gabbroic rocks within the oceanic lithosphere was followed by a multiphase tectono-metamorphic evolution including (i) dynamic recrystallization within shear zones, developed under granulite- to upper-amphibolite-facies conditions, and (ii) intrusion of highly evolved melts forming felsic segregations. This tectono-metamorphic evolution recalls that of the lower crust from other OCCs worldwide, demonstrating that this OCC exposes deep-seated intrusions progressively exhumed by detachment faulting. Nonetheless, the Mado Megamullion lower crustal gabbros show an unusual crystal line of descent, different from what is reported from mid-ocean ridge lower crustal rocks. We infer that the water-bearing character of the primary melts in this back-arc basin triggered the early precipitation of clinopyroxene, soon followed by amphibole and Fe-Ti oxides. Such modifications in phase saturation are likely to be directly related to the back-arc setting of the Mado Megamullion. If so, the phase assemblages of oceanic gabbros may be a diagnostic for the tectonic setting of lower crustal rocks in ophiolites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据