4.4 Article

A micrometer-scale snapshot on phototroph spatial distributions: mass spectrometry imaging of microbial mats in Octopus Spring, Yellowstone National Park

期刊

GEOBIOLOGY
卷 18, 期 6, 页码 742-759

出版社

WILEY
DOI: 10.1111/gbi.12411

关键词

intact polar lipids; MALDI FT-ICR-MS; microbial mat; molecular biomarker; Roseiflexus; Synechococcus

资金

  1. MIT International Science and Technology Initiatives
  2. MIT-Germany Seed Fund
  3. H2020 European Research Council [670115]
  4. Hanse-Wissenschaftskolleg
  5. European Research Council (ERC) [670115] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Microbial mats from alkaline hot springs in the Yellowstone National Park are ideal natural laboratories to study photosynthetic life under extreme conditions, as well as the nuanced interactions of oxygenic and anoxygenic phototrophs. They represent distinctive examples of chlorophototroph (i.e., chlorophyll or bacteriochlorophyll-based phototroph) diversity, and several novel phototrophs have been first described in these systems, all confined in space, coexisting and competing for niches defined by parameters such as light, oxygen, or temperature. In a novel approach, we employed mass spectrometry imaging of chloropigments, quinones, and intact polar lipids (IPLs) to describe the spatial distribution of different groups of chlorophototrophs along the similar to 1 cm thick microbial mat at 75 mu m resolution and in the top similar to 1.5 mm green part of the mat at 25 mu m resolution. We observed a fine-tuned sequence of oxygenic and anoxygenic chlorophototrophs with distinctive biomarker signatures populating the microbial mat. The transition of oxic to anoxic conditions is characterized by an accumulation of biomarkers indicative of anoxygenic phototrophy. It is also identified as a clear boundary for different species and ecotypes, which adjust their biomarker inventory, particularly the interplay of quinones and chloropigments, to prevailing conditions. Colocalization of the different biomarker groups led to the identification of characteristic IPL signatures and indicates that glycosidic diether glycerolipids are diagnostic for anoxygenic phototrophs in this mat system. The zoom-in into the upper green part further reveals how oxygenic and anoxygenic phototrophs share this microenvironment and informs on subtle, microscale adjustments in lipid composition of Synechococcus spp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据