4.7 Article

World competitive contest-based artificial neural network: A new class-specific method for classification of clinical and biological datasets

期刊

GENOMICS
卷 113, 期 1, 页码 541-552

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2020.09.047

关键词

Artificial neural networks (ANN); Classification; Clinical data; WCC algorithm

向作者/读者索取更多资源

This study introduces an efficient approach based on the WCC algorithm and multi-layer perceptron artificial neural network, generating a specific model for each individual data class which yields high accuracy in clinical and biological data classification.
Many data mining methods have been proposed to generate computer-aided diagnostic systems, which may determine diseases in their early stages by categorizing the data into some proper classes. Considering the importance of the existence of a suitable classifier, the present study aims to introduce an efficient approach based on the World Competitive Contests (WCC) algorithm as well as a multi-layer perceptron artificial neural network (ANN). Unlike the previously introduced methods, which each has developed a universal model for all different kinds of data classes, our proposed approach generates a single specific model for each individual class of data. The experimental results show that the proposed method (ANNWCC), which can be applied to both the balanced and unbalanced datasets, yields more than 76% (without applying feature selection methods) and 90% (with applying feature selection methods) of the average five-fold cross-validation accuracy on the 13 clinical and biological datasets. The findings also indicate that under different conditions, our proposed method can produce better results in comparison to some state-of-art meta-heuristic algorithms and methods in terms of various statistical and classification measurements. To classify the clinical and biological data, a multi-layer ANN and the WCC algorithm were combined. It was shown that developing a specific model for each individual class of data may yield better results compared with creating a universal model for all of the existing data classes. Besides, some efficient algorithms proved to be essential to generate acceptable biological results, and the methods' performance was found to be enhanced by fuzzifying or normalizing the biological data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据