4.2 Article

Zebrafish cyp17a1 knockout reveals that androgen-mediated signaling is important for male brain sex differentiation

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygcen.2020.113490

关键词

Brain dimorphism; Neurons; RNA sequencing; Sexual dimorphism; Steroids

资金

  1. National Key Research and Development Program, China [2018YFD0900205]
  2. National Natural Science Foundation, China [31530077]
  3. Swedish Research Council [2015-04600]
  4. Knowledge foundation, Sweden [20170231]
  5. Edla Johansson's Scientific Foundation
  6. Orebro University
  7. Swedish Research Council [2015-04600] Funding Source: Swedish Research Council

向作者/读者索取更多资源

Brain sex differentiation is a complex process, wherein genes and steroid hormones act to induce specific gender brain differentiation. Testosterone (T) derived from the gonads has been linked to neural circuit modeling in a sex-specific manner. Previously, we have shown that cyp17a1 knockout (KO) zebrafish have low plasma androgen levels, and display compromised male-typical mating behaviors. In this study, we demonstrated that treatment of cyp17a1 KO males with T or 11-ketotestosterone (11-KT) is sufficient to rescue mating impairment by restoring the male-typical secondary sex characters (SSCs) and mating behaviors, confirming an essential role of androgen in maintaining SSCs and mating behaviors. Brain steroid hormone analysis revealed that cyp17a1 KO fish have reduced levels of T and 11-KT. We performed RNA sequencing on brain samples of control and cyp17a1 KO male zebrafish to get insights regarding the impact of cyp17a1 KO on gene expression pattern, and to correlate it with the observed disruption of male-typical mating behaviors. Transcriptome analysis of cyp17a1 KO males showed a differential gene expression when compared to control males. In total, 358 genes were differentially regulated between control males and KO males. Important genes including brain aromatase (cyp19a1b), progesterone receptor (pgr), deiodinase (dio2), and insulin-like growth factor 1 (igf1) that are involved in brain functions, as well as androgen response genes including igf1, frem1a, elovl1a, pax3a, mmp13b, hsc70, ogg1 were regulated. RT-qPCR analysis following rescue of cyp17a1 KO with T and 11-KT further suggested that androgen-mediated signaling is disrupted in the cyp17a1 KO fish. Our results indicated that cyp17a1 KO fish have an incomplete masculinization and altered brain gene expression, which could be due to decreased androgen levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据