4.7 Article Proceedings Paper

Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a micro-gas turbine engine

期刊

FUEL
卷 276, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118104

关键词

Gas turbine engine; Combustion; Emission; Jet-A fuel; Ethanol; Biofuel

资金

  1. Sathyabama Institute of Science and Technology, Chennai City, Tamil Nadu, India
  2. Ministry of Science and Technology-Taiwan [107-2113-M-037-007-MY2]
  3. Research Center for Environmental Medicine, Kaohsiung Medical University, Taiwan from The Featured Areas Research Center Program by the Ministry of Education (MOE) in Taiwan
  4. NSYSU-KMU collaboration research project-Taiwan [NSYSU-KMU 107-I004]

向作者/读者索取更多资源

This study focuses on combustion, emission, and performance analysis of JET-A fuel blends with various additives using a micro gas turbine engine. The amount of oxygen in fuel blends and atomization are the crucial parameters in the production of a higher combustion rate with less emission. Therefore, various ratios of additives (ethanol and pentanol) are blended with biofuel (rapeseed and canola-sunflower oil) to form the JET-A fuel blends by using Kay's and Grunberg-Nissan mixing rules. The combustion, performance and emission parameters under different engine loads were examined. Results showed that all the blends logged higher static thrust with an appreciable reduction rate in the consumption of the fuel. Among different fuel blends, R20E (JetA 70% fuel, 20% Rapeseed, and 10% ethanol) showed 35% increase in static thrust associated with 41% reduction in thrust specific fuel consumption. Moreover, the blends R20E and CS20E (Jet-A fuel 70%, Canola-Sunflower 20% and 10% ethanol) indicated 24% and 10% increase in thermal efficiency respectively due to the influence of ethanol concentration and higher oxygen content. In addition, these fuel blends generate less emission of environmental unfriendly harmful gases, including NOx, CO, and HC, compared to neat Jet-A fuel. Results revealed that the exergy destruction values are higher for the combustion chamber than the other conventional fuel components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据